National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
The role of untranslated mRNA regions in Giardia intestinalis.
Najdrová, Vladimíra ; Doležal, Pavel (advisor) ; Zubáčová, Zuzana (referee)
Giardia intestinalis is an anaerobic protozoan pathogen, agent of the disease known as giardiasis. The regulation of gene expression during giardia cell- and life-cycle has been poorly studied so far, with the exception of variable surface proteins, which constitute the immunoprotective coat of the cell. In this diploma thesis, we focus on the possible role of the 3' untranslated region (3'UTR) of mRNA that mediate stability and localization of mRNA transcripts. We use RNA binding proteins of PUF family, which control the function of the target transcripts by their repression, activation or sequestration, to monitor and verify the role of 3'UTRs. These only eukaryotic proteins are highly evolutionarily conserved. Each of them contain highly conserved C-terminal domain, which specificly binds to 3'UTR of mRNAs. We have identified five different PUF proteins in the genome of G. intestinalis (GiPUF), cinfirmed their expression in G. intestinalis trophozoites and located all five proteins in the cytoplasm. GiPUF2, GiPUF3 and GiPUF5 show an additional affinity to the surface of the endoplasmic reticulum. We have identified the C-terminal binding domain in protein sequences of all GiPUF. The most conserved GiPUF4 contain eight binding sites, nearly identical to the binding site of human Pum1 protein,...
The role of untranslated mRNA regions in Giardia intestinalis.
Najdrová, Vladimíra ; Doležal, Pavel (advisor) ; Zubáčová, Zuzana (referee)
Giardia intestinalis is an anaerobic protozoan pathogen, agent of the disease known as giardiasis. The regulation of gene expression during giardia cell- and life-cycle has been poorly studied so far, with the exception of variable surface proteins, which constitute the immunoprotective coat of the cell. In this diploma thesis, we focus on the possible role of the 3' untranslated region (3'UTR) of mRNA that mediate stability and localization of mRNA transcripts. We use RNA binding proteins of PUF family, which control the function of the target transcripts by their repression, activation or sequestration, to monitor and verify the role of 3'UTRs. These only eukaryotic proteins are highly evolutionarily conserved. Each of them contain highly conserved C-terminal domain, which specificly binds to 3'UTR of mRNAs. We have identified five different PUF proteins in the genome of G. intestinalis (GiPUF), cinfirmed their expression in G. intestinalis trophozoites and located all five proteins in the cytoplasm. GiPUF2, GiPUF3 and GiPUF5 show an additional affinity to the surface of the endoplasmic reticulum. We have identified the C-terminal binding domain in protein sequences of all GiPUF. The most conserved GiPUF4 contain eight binding sites, nearly identical to the binding site of human Pum1 protein,...
The role of Src family kinases in RNA processing
Gemperle, Jakub ; Rösel, Daniel (advisor) ; Mácha, Jaroslav (referee)
Until now, a lot of information have been obtained about the role of Src family kinases in the cytoplasm or at the plasma membrane and their interactions with growth factor receptors or focal adhesion complexes. Their functional importance at the perinuclear membrane, or even inside the nucleus, however, has not been well characterized. This work, using available information, pointed at the fact that Src family kinases can be found in the nucleus. This opens a new field of Src kinases action, such as in RNA metabolism, considering that it has been assumed that their activity is limited to the cytoplasmic compartment. This work summarizes the current knowledge that hints to Src family kinases dependent network of regulation of RNA metabolism; Src family kinases have pleiotropic effects not only on the RNA binding proteins, but also on the remodeling of chromatin structure. These kinases affect by direct interactions with other proteins transport, splicing or RNA stability and gene expression. This summary suggests that Src family kinases could regulate RNA metabolism on many levels.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.